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1 Economic Order Quantity Model

1.1 Economic Order Quantity (EOQ)

Definition 1.1
1. D: Constant demand’s rate per unit time

2. Q: Fixed quantities per order, and T = Q/D is the time between two successive

replenishments as a reorder interval.

3. K: Fixed set-up cost per order

4. h: inventory holding cost

5. I(t): inventory level at time t

Assumption 1.1
1. The supplier has an unlimited quantity of the product.

2. The lead time is zero.

3. Initial inventory is zero.

Lemma 1.1 (Zero-inventory-ordering property)
Every order is received precisely when the inventory level drops to zero.

Definition 1.2 (Economic order quantity (EOQ))
Given the objective to minimize the average total cost per unit of time (the total cost in a

reorder interval is K + h
∫ T
0 I(t)dt = K + hTQ

2 ), by FOC, Q∗ =
√

2KD
h .

min
Q

1

T

(
K +

hTQ

2

)
=

KD

Q
+

hQ

2

Remark EOQ is the quantity at which the ordering cost per unit of time (KD/Q) equals to the

inventory holding cost per unit of time (hQ/2).

Note that these assumptions can be relaxed without losing generality,

1. If the order quantities cannot exceed C, then Q∗ = min{Q∗, C}
2. With lead time L, place Q∗ when I(t) = DL.

3. With initial inventory I0, then the first order is simply delayed until time I0/D.



1 Economic Order Quantity Model

1.2 Power-of-Two Policies

Definition 1.3 (T ∗ for Economic order quantity (EOQ))
Given the objective to minimize the average total cost per unit of time, by FOC, T ∗ =
Q∗

D =
√

2K
hD and f (T ∗) =

√
2KhD.

min
T

1

T

(
K +

hTQ

2

)

Definition 1.4 (Power-of-Two policy)
In this restriction, T is restricted to be a power-of-two multiple of some fixed base planning

period TB , that is, T = TB2
k, k ∈ {0, 1, 2, . . .}.

Remark This policy makes T ∗ more implementable; otherwise, T ∗ may equal to
√
3 which is

not implementable in practice.

Lemma 1.2
Under power-of-two policy, k∗ = ⌈log2 (T ∗/TB)− 0.5⌉ and the average cost of the

power-of-two policy is guaranteed to be within 6% of the overall policy.

Proof

f
(
TB2

k
)
≤ f

(
TB2

k+1
)

k∗ is the smallest integer satisfying it by convexity of f

K

TB2k
+

hD

2
TB2

k ≤ K

TB2k+1
+

hD

2
TB2

k+1

K

hD
≤

(
TB2

k
)2

√
K

hD
=

1√
2
T ∗ ≤ TB2

k

log2 (T
∗/TB)− 0.5 ≤ k ≤ log2 (T

∗/TB) + 0.5

Thus for any TB , the optimal power-of-two policy must be in the interval
[
T ∗/

√
2,
√
2T ∗] and

f(T )
f(T ∗) ≤ 1.06. ■

1.3 EOQ with finite horizon

1. τ =
∑m

i=1 Ti: finite horizon
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1 Economic Order Quantity Model

2. P: inventory policy, places m ≥ 1 orders in interval [0, τ ], and relax the assumption that

the order quantities are fixed.

3. Ti the time between the placement of ith order and i + 1st order, Tm means the time

between the placement of last order and τ

Lemma 1.3 (Optimal T ∗ given m)

Given m and minimize the total cost, T ∗ = [T ∗
1 , . . . T

∗
m]⊤ = τ

m .

minKm + h

∫ τ

0
I(t)dt ⇐⇒ min

∫ τ

0
I(t)dt

Proof By zero-inventory-ordering property, we know I(τ) = 0, thus our problem is divided

into multiple segments.

min
m∑
i=1

Ti · TiD

2
=

D

2

m∑
i=1

T 2
i

min

{
m∑
i=1

T 2
i :

m∑
i=1

Ti = τ, Ti ≥ 0∀i = 1, . . . ,m

}

min

{
m∑
i=1

T 2
i :

m∑
i=1

Ti = τ

}
Relax

By lagrangian L(T, λ) =
∑m

i=1 T
2
i − λ (

∑m
i=1 Ti − τ) we can derive T ∗. ■

Lemma 1.4

To minimize the total cost, m∗ = τ
√

hD
2K .

Proof By Lemma 1.3 we have minKm+ hDτ2

2m . ■
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2 Inventory control by Dynamic Programming

1.4 EOQ with backlogging demand

1.5 Economic production quantity (EPQ)

2 Inventory control by Dynamic Programming

2.1 Dynamic Programming

Definition 2.1 (Dynamic Programming)
1. k: the index of time

2. N : the horizon of times

3. xk: state of the system, an element of a spaceSk, it summarizes the past information.

4. uk: decision variable at time k, constrained to be in a subset Vk(xk).

5. wk: random parameter/ disturbance/ noise, characterized by P (· | xk, uk), but

does not depend on prior disturbances wk−1, . . . , w0. The system is deterministic

if each wk can take only one value.

6. xk+1 = fk (xk, uk, wk) , k = 0, 1, . . . , N − 1: state transition equation

7. gN (xN ) +
∑N−1

k=0 gk (xk, uk, wk) or E
{
gN (xN ) +

∑N−1
k=0 gk (xk, uk, wk)

}
: ob-

jective function

Definition 2.2 (Inventory control by DP)
1. xk: stocks available at the beginning of the kth period

2. uk: stocks ordered at the beginning of the kth period

3. wk: demand during the kth period, assume the excess demand is backlogged

4. xk+1 = xk + uk − wk, k = 0, 1, . . . , N − 1: state transition equation

5. h(xk): include holding cost for positive stock and shortage cost for negative stock

6. c(uk): purchasing cost

7. minui≥0E
{
gN (XN ) +

∑N−1
k=0 (h (xk+1) + c (uk))

}
, where gN (XN ) is the ter-

minal cost

Definition 2.3 (Open,Close loop optimization)
1. Open-loop optimization means select all decisions u0, ..., uN−1 at one at time 0

2. Closed-loop optimization means postpone the decision uk until xk is known (excess

information).

Remark In closed-loop, we are not interested in finding optimal numerical values of uk, but

rather we want to find an optimal rule/ policy µk(xk).

Definition 2.4 (Policy)
1. µk(xk): the action to be taken at time k if the state is xk
2. π = {µ0, . . . , µN−1}: a policy or control law
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2 Inventory control by Dynamic Programming

3. Admissible policy: A policy such that µk (xk) ∈ Uk (xk)∀xk ∈ Sk

4. xk+1 = fk (xk, µk (xk) , wk) , k = 0, 1, . . . , N − 1: state transition equation

5. Jπ (x0) = E
{
gN (xN ) +

∑N−1
k=0 gk (xk, µk (xk) , wk)

}
: objective function

6. J∗ (x0) = minπ∈Π Jπ (x0): Optimal value

7. Jπ∗ (x0) = minπ∈Π Jπ (x0): Optimal policy

Theorem 2.1 (Principle of Optimality)
If a policy

{
µ∗
0, µ

∗
1, . . . , µ

∗
N−1

}
is optimal for the problem from time 0 to time N, then

the truncated policy
{
µ∗
k, µ

∗
k+1, . . . , µ

∗
N−1

}
is optimal for the subproblem minimizing the

cost from time k to time N.

Remark The tail portion of an optimal policy is optimal for the tail subproblem.

Theorem 2.2 (DP is optimal)
For every initial state x0, the optimal cost J∗(x0) is equal to J0(x0) by DP:

JN (xN ) = gN (xN )

Jk (xk) = min
uk∈Uk(xk)

Ewk
{gk (xk, uk, wk) + Jk+1 (fk (xk, uk, wk))} , k = 0, 1, . . . , N − 1,

Furthermore, if u∗k = µ∗
k (xk) minimizes this DP, then the policy π∗ =

{
µ∗
0, . . . , µ

∗
N−1

}
is optimal.

Proof ■

2.2 Asset Selling

Definition 2.5
1. T : termination state

2. r: if accept the offer, he can invest the money at a fixed rate of interest r > 0

3. xK: if xk = T∀k ≤ T − 1, say the asset has been sold

4.
{
u′, u2

}
: control space, means { "sell", "not sell" }, no more decisions if the asset

has been sold in the kth stage.

5. wk: disturbance at time k, is i.i.d Random variable

6. state transition equation

xk+1 = fk (xk, uk, wk) =

 T if xk = T, or if xk ̸= T and uk = u1 (sell)

wk otherwise
k = 1, . . . , N − 1
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2 Inventory control by Dynamic Programming

7. Objective function: Ew0,...,wN−1

{
gN (xN ) +

∑N−1
k=1 gk (xk, uk, wk)

}
gN (xN ) =

xN if xN ̸= T

0 otherwise

gk (xk, uk, wk) =

(1 + r)N−kxk if xk ̸= T and uk = u1( sell )

0 otherwise

Lemma 2.1
With DP

JN (xN ) =

xN if xN ̸= T,

0 otherwise ,

Jk (xk) =

max
[
(1 + r)N−kxk, E {Jk+1 (wk)}

]
if xk ̸= T

0 if xk = T

Let αk =
E{Jk+1(wk)}
(1+r)N−k , the optimal policy is

1. Accept the offer xk if xk > αk

2. Reject the offer xk if xk < αk

Proof Firstly we should prove αk−1 ⩾ αk, it means that if an offer is good enough to be

acceptable at time k − 1, it should also be acceptable at time k. Note that prove Jk(x) ≥
(1 + r)Jk+1(x) ∀x ̸= T is enough, and it can be proved by induction. ■

2.3 Dynamic Lot-Sizing

Consider we want to plan a sequence of orders over T periods, keep 3 assumptions

1. dt: demand at period t, deterministic

2. K: fixed order cost for every order; c: per unit order cost. Thus if ordering z units, order

cost is

cz +KIz>0 Ia = 1, 0

3. h: holding cost per unit per period

4. objective function

min
∑T

t=1 [KIzt>0 + hIt]

s.t. It = It−1 + zt − dt, t = 1, . . . , T (Inventory-balance constraint)

I0 = 0 (Initial inventory)

It, zt ≥ 0, t = 1, . . . , T
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3 Stochastic Newsvendor

Lemma 2.2 (Zero-inventory-ordering property)
Any optimal policy is a zero-inventory ordering policy, i.e., a policy in which

ztIt−1 = 0, for t = 1, . . . , T

Remark A simple corollary is that in an optimal policy an order is of size equal to satisfy demand

for an integer number of subsequent periods. So the problem can be transferred to the decision

of time to order.

1. ni: state, means the 1st time to place an order in periods {i, . . . , T + 1}, ni = T + 1

means no order from i to T

2. ui: control variable, means the time for 1st order in {i + 1, . . . , T + 1}, must be chosen

from Ui(ni)

Ui (ni) =

{i+ 1, . . . , T + 1} if ni = i

ni if ni > i

3 Stochastic Newsvendor

3.1 Single Period Newsvendor

Definition 3.1
Assume demand D with F (.), unit selling price r, unit cost c and salvage value v (r >

c > v), let y denote the amount produced, then we want to minimize the expected cost

min
y

f(y) = cy − rE[min{y,D}]− vE
[
(y −D)+

]
Here

a+ = max{0, a} min{y,D} = D − (D − y)+ (D − y)+ − (y −D)+ = D − y

And optimal y∗ = S satisfy F (S) = r−c
r−v .

Remark Optimality means the balance between the cost of being understocked and the total

costs of being either overstocked or understocked.
r − c

r − v
=

underage cost
overage cost + underage cost

Proof
f(y) = cy − rE[D] + rE

[
(D − y)+

]
− vE

[
(y −D)+

]
= cy − rE[D] + (r − v)E

[
(D − y)+

]
+ vE[D − y]

= (c− v)y − (r − v)E[D] + (r − v)

∫ ∞

u
(D − y)dF (D).

Take the FOC we have (c− v)− (r − v)(1− F (y)) = 0. ■
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3 Stochastic Newsvendor

Definition 3.2 ((s, S) policy)
Assume initial inventory is x and a fixed set-up cost K, then order S − x if x ≤ s,

otherwise do not order.

Definition 3.3 (Discrete Newsvendor’s Optimal)
Suppose demand can be D1, D2, . . . , Dn with probability p1, p2, . . . , pn, then the optimal

order quantity must be one of the demand points, D1, D2, . . . , Dn.

3.2 Multiple Period (Finite) Newsvendor

Definition 3.4 (DP for Multiple Period Newsvendor)
Consider T periods, the inventory level at the beginning of t period is xt, the inventory

level at the end of t period is yt, the demand for period t is Dt (iid). If Dt ≥ yt, then the

additional demand is backlogged to the next period, thus we have negative inventory, e.g.

xt+1 = yt −Dt.

Ordering cost consists of a set-up cost K, a proportional purchase cost c, the ordering

cost is KIyt>xt + c (yt − xt). Holding cost h and Shortage cost b means the expected

one-period shortage and holding cost is Ht (yt) = hE
[
(yt −Dt)

+]+ bE
[
(Dt − yt)

+],
note that it is convex.

Let HT+1 (xT+1) = −cxT+1 as the boundard condition. Then we have a DP:

Jt (xt) = min
yt≥xt

{KIyt>xt + c (yt − xt) +Ht (yt) + E [Jt+1 (yt −Dt)]} ∀t = 1, . . . , T

= −cxt + min
yt≥xt

{KIyt>xt + ft (yt)} (ft (yt) = cyt +Ht (yt) + E [Jt+1 (yt −Dt)])

JT+1 (xT+1) = HT+1 (xT+1)

Definition 3.5 (K-Convex Function)
A real valued function f is called K-convex for K ≥ 0 if for any x0 ≤ x1 and λ ∈ [0, 1].

f ((1− λ)x0 + λx1) ≤ (1− λ)f (x0) + λf (x1) + λK

Lemma 3.1 (Properties)
1. A real-valued convex function is also 0-convex and hence K-convex for all K ≥ 0.

A K1-convex function is also a K2-convex function for K1 ≤ K2.

2. If f1(y) and f2(y) are K1-convex and K2-convex, respectively, then for α, β ≥ 0,

αf1(y) + βf2(y) is (αK1 + βK2)-convex.

3. If f(y) isK-convex and ζ is a random variable, thenEζ [f(y−ζ)] is alsoK-convex,

provided E[|f(y − ζ)|] < ∞ for all y.
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3 Stochastic Newsvendor

Proposition 3.1
Assume that f is a continuous K-convex function for some K > 0 and f(y) → ∞ as

|y| → ∞. Let S be a minimum point of f and s be any element of the set {x : x ≤
S, f(x) = f(S) +K}, then

1. f(y) ≥ f(s) = f(S) +K for all y ≤ s

2. f(y) is a non-increasing function on (−∞, s)

3. f(y) ≤ f(z) +K for all y, z such that s ≤ y ≤ z

Proposition 3.2
If f(x) is a K-convex function, then g(x) = miny≥x {QIy>x + f(y)} is max{K,Q}-

convex.

Theorem 3.1 (Optimalit of (st, St) Policy)
1. For any t = 1, ..., T , ft(y) and Jt(x) are continuous and lim|y|→∞ ft(y) = ∞
2. For any t = 1, ..., T , ft(y) and Jt(x) are K-convex.

3. For any t = 1, ..., T , there exist two parameters st and St such that it is optimal

to make an order to raise the inventory to St when the initial inventory level is no

more than st and to order nothing otherwise.

Definition 3.6 (Multiple period Newsvendor with Leadtime L)

3.3 Integration of Inventory and Pricing

Definition 3.7
Consider we also decide the selling price and the demand ξt depends on pt, ξt =

αtDt (pt) + βt, here

1. αt ≥ 0, E[αt] = 1

2. E[βt] = 0

3. Dt(pt) is continuous and strictly decreasing for any pt ∈
[
p
t
, p̄t

]
, since E[αt] =

1, E[βt] = 0, Dt(pt) can be interpreted as the expected demand for pt
For (αt, βt),

1. If αt is deterministic, this demand function is the additive demand function, i.e.

ξt = Dt (pt) + βt.

2. If βt is deterministic, it is multiplicative demand function, i.e. ξt = αtDt (pt)

Assume that lead time is zero and unsatisfied demand is backlogged, and let xt and yt be

the inventory levels at the beginning and the end of period t, then

xt+1 = yt − ξt = yt − αtDt (pt)− βt

Assume no fixed set-up cost, the ordering cost is c (yt − xt), let h(xt+1) denotes the
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3 Stochastic Newsvendor

holding or shortage cost, then the expected revenue is E [ptξt] = ptDt (pt), and the

expected cost is ptDt (pt)− c (yt − xt)− E [h (yt − αtDt (pt)− βt)]. We have a DP

Jt (xt) = max
yt≥xt,

pt∈[pt,p̄t]

{ptDt (pt)− c (yt − xt)− E [h (yt − αtDt (pt)− βt)] + E [Jt+1 (yt − αtDt (pt)− βt)]} t = 1, ...T

= max
yt≥xt,

dt∈[dt,d̄t]

{Rt (dt)− c (yt − xt)− E [h (yt − αtdt − βt)] + E [Jt+1 (yt − αtdt − βt)]} (dt = Dt (pt) , Rt (dt) = dtD
−1
t (dt))

= cxt + max
yt≥xt

ft (yt) (ft (yt) = max
dt∈[dt,d̄t]

{Rt (dt)− E [h (yt − αtdt − βt)] + E [Jt+1 (yt − αtdt − βt)]− cyt})

JT+1 (xT+1) = cxT+1

Note that Rt(dt) is concave and h(xt+1) is convex.

Definition 3.8 (Base stock list price policy)

Definition 3.9 (Join)

x ∨ x′ =
(
max

{
x1, x

′
1

}
,max

{
x2, x

′
2

}
, . . . ,max

{
xn, x

′
n

})
Definition 3.10 (Meet)

x ∧ x′ =
(
min

{
x1, x

′
1

}
,min

{
x2, x

′
2

}
, . . . ,min

{
xn, x

′
n

})
Definition 3.11 (Supermodular)

Consider a function f : X 7→ R, where X ⊆ Rn. The function f is supermodular on the

set X , if for any x,x′ ∈ X ,

f(x) + f
(
x′) ≤ f

(
x ∨ x′)+ f

(
x ∧ x′)

whenever x ∨ x′,x ∧ x′ ∈ X .

Proposition 3.3
1. Any positively linear combination of supermodular functions is supermodular.

2. Assume that a function f(., .) is defined in the product space Rn ×Rm. If f(., y) is

supermodular for any giveny ∈ Rm, then for a random vector ζ ∈ Rm,Eζ [f(x, ζ)]

is supermodular, provided it is well defined.

Proposition 3.4
For a1, a2 ≥ 0 and a concave function f : R 7→ R, g (x1, x2) = f (a1x1 − a2x2) is

supermodular.
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